
Fairness of N-party Synchronization and Its
Implementation in a Distributed Environment1

Cheng Wu, Gregor v. Bochmann, Mingyu Yao

Departement d'informatique et de recherche operationnelle
Universite de Montreal, Montreal, P.Q., Canada

Abstract Fairness is an important concept in design and implementation of
distributed systems. At the specification level, fairness usually serves as an
assumption for proving liveness. At implementation level, the question
becomes how to implement the underlying fairness which is assumed to be true
at the specification level. In this paper, we study four types of fairness, the so-
called w-fairness (weak fairness), s-fairness (strong fairness), u-fairness and su-
fairness, in the context of the design of N-party synchronization algorithms.
Within an abstract model for distributed systems, we formally introduce the
four fairness concepts. We formally present, in the form of extended finite state
machines, several distributed N-party synchronization algorithms which satisfy
different fairness properties. The algorithms given in this paper are abstract in a
sense that they are not optimized. The abstraction makes the construction of the
algorithms and their proof of correctness easier.

1. Introduction

Fairness is an important property in the design and implementation of distributed
systems. When specifying a distributed system, one usually assumes that the system
has some kind of fairness. And based on these fairness assumptions, liveness
properties can be proved [4]. Liveness properties are usually described as "good
things will eventually happen" and fairness properties are usually described as "if
something is always or infinitely often ready then it will eventually happen". So, if
one can show that a "good thing" meets some conditions such as being always or
infinitely often ready, then fairness assumptions will lead to the related liveness
property, that is, "it will eventually happen". It is clear that formal definitions of
fairness are needed to prove liveness. There is a lot of work in this area (see for
instances [4, 7, 13]).

Besides obtaining a proof system, another motivation for studying fairness
properties is to implement fairness, that is, to make sure that the implementation of a
distributed system has the fairness properties which are assumed to be true in its
specification. Thus properties which are proved to hold at the specification level
based on those fairness assumptions, will also hold for the implementation. In this
paper, we mainly address the question of implementing N-party synchronization with
different kinds of fairness proprieties. We are interested here in four fairness
properties, namely w-fairness, s-fairness, u-fairness and su-fairness. Here, w-fairness
and s-fairness are the well known weak fairness and strong action (interaction)

1 This work was performed within the IDACOM-NSERC-CWARC Industrial Research Chair
on Communication Protocols and was also supported by the Ministry of Education of Quebec.

- 2 -

fairness, respectively; u-fairness is defined in [1] and is also called handshake fairness
in [2]; su-fairness is introduced in this paper to implement s-fairness.

N-party synchronization (also called multi-way rendezvous) is an important
concept [3], and is used in certain specification languages such as LOTOS [6]. In N-
party synchronization, an arbitrary number of processes may synchronize. The
question of implementation of N-party synchronization respecting the fairness
properties has been studied by various authors. The problem is hard for a distributed
solution, where each process only has a partial picture of the system's global state.
Distributed solutions for w-fairness were presented in [11, 8] and one for u-fairness
was presented in [1]. S-fairness is proven by the work of [12] to be impossible to
implement based on an assumption that an active process may not become idle to
communicate with other processes (that is, a process may always do local (internal)
actions). In fact, under this assumption, the u-fairness is also impossible to
implement, which will be discussed later in this paper.

Our work presented in this paper is based on an assumption that any action will
eventually terminate after it starts (that is, an active process will eventually become
idle to communicate with other processes). In this paper, we first define an abstract
model for distributed systems. Then we give definitions of the four fairness properties
above by using the formalisms of transition systems and linear temporal logic. Su-
fairness introduced in this paper is stronger than s-fairness. We aim to implement su-
fairness instead of s-fairness. An algorithm which satisfies su-fairness also satisfies s-
fairness.

We present four distributed algorithms for N-party synchronization. Algorithms 1
and 2 satisfy w-fairness and u-fairness respectively. Algorithm 3 satisfies u-fairness,
and Algorithm 4 satisfies s-fairness and su-fairness. We do not give any algorithm
which satisfies exactly s-fairness. The algorithms presented in this paper are abstract
in a sense that they are not optimized. The abstraction makes the construction of the
algorithms and their proof of correctness easier. In fact, in this paper, Algorithm i is
constructed based on Algorithm j (j < i) and the correctness proof of the former is
based on the properties of the latter.

This paper is organized as follows. In Section 2, we give the abstract model for
distributed systems and define w-fairness, s-fairness, u-fairness, and su-fairness. In
Section 3, we present the four distributed algorithms for N-party synchronization
which satisfy different fairness properties. Finally, Section 4 contains our
conclusions.

2. An abstract model for distributed systems and fairness
definitions

2.1. Theoretical framework - linear Temporal Logic and labeled transition
systems

Fairness properties are related to infinite execution histories. Usually so-called "weak
fairness" and "strong fairness" properties are described informally as "if permanently
(always) A then eventually B" and, respectively, "if infinitely often A then eventually
B". Temporal Logic can be used to describe temporal concepts such as
permanently(always), infinitely often and eventually [4, 7, 9]. In the following we will

- 3 -

give a brief introduction to Linear Temporal Logic [10] which will be used to define
fairness properties in this paper.

Besides the ordinary logical operators or, and, not, and � (imply), Linear

Temporal Logic uses two temporal operators � and []. The expression [] P (read
"henceforth P") means that P is true now and will always be true in the future, and �

P (read "eventually P") means that P is true now or will be true sometimes in the
future. They are usually interpreted based on a computation model of state sequences.
The temporal concepts mentioned above can be described by the two temporal

operators and their combinations. For example, �[] P means from a certain time

onwards permanently P; []� P means infinitely often P.
In Section 2.2 we will use Labeled Transition Systems to describe our model for

distributed systems. In the following, we show several interesting concepts related to
Labeled Transition Systems, which will be used to define fairness properties.

Definition 2.1 A labeled transition system is a triple LTS=(S,T,{-t->} t�T) where,
- S is a countable set of states
- T = {t1, t2, ...} is a set of labeled transitions
- {-t->}t�T is a set of binary relations on S (SS� -t->) in bijection with the labeled

transitions.

Definition 2.2. An execution history h is a sequence of transition states
s0(),s1(t1),s2(t2),... , where si�S, ti�T and <si-1,si>� -ti->, and s0() is an initial
transition state. Note: each transition state si(ti) of an execution history represents the
state si of the LTS and the transition ti that was "executed" by the system when
entering this state.

Definition 2.3. For a given transition state s(t) in an execution history ha transition
labelled t' is said to be executedwhich is denoted as EXECUTED(t'), iff t = t'.

Note, EXECUTED is an assertion on transition states. We can combine the assertion

EXECUTED with the two temporal operators [] and �. For instance,
[]�EXECUTED(t) means transition t is infinitely often executed in an execution
history.

2.2. A model for distributed systems

We consider here a distributed system consisting of a fixed set of processes and a
fixed set of actions. Each action is associated with a non-empty set of processes
which is called its process-set. Each process participates in a non-empty set of actions
which is called its action-set. The process-sets and the action-sets are static, that is,
their membership does not change.

Processes are executed concurrently. A process executes one action at a time.
Processes have disjoint local state spaces, that is, there are no shared variables. A
process contains a set of local variables. One of them is called control state variable
which records the control state of the process. At any instance in time, the control

- 4 -

state vairable of a process has one of the following two values: idle which denotes
that the process is waiting to execute actions (we say that the process is in the idle
state); execution which denotes that the process is executing an action (we say that
the process is in the execution state). In executing an action, a process changes some
of its local variables. A process associates each of the actions in its action-set with a
guard, a boolean function on its local variables (excluding the control state variable);
it is said to be willing to do an action if the guard for the action is true. A process can
autonomously change from the execution state to the idle state when the execution of
an action terminates. We assume that a process takes finite time to finish the
execution of any action, which ensures that a process eventually changes form the
execution state to the idle state whenever it is in the execution state. In order to enter
the execution state, a process has, in general, to communicate with the other processes
that also participate in the execution of the action. A process immediately changes
from the idle state to the execution state when it commits to execute an action.

An action can only be ready to execute when all the processes in its process-set
are in their idle state and willing to do the action, that is, related guards of the action
are true. An action is called a "communication", a "channel" or an "inter-action" if its
process set has more than one element. An action is called a"local action" if its
process set includes only one process.

To clearly define fairness, we need to formally describe the model above. We use
labelled transition systems. We first consider that the behavior of each process in the
system is given by a labelled transition system. Then the behavior of the system is
defined by a global labelled transition system which is built from the local transition
systems of the processes in the system.

We consider here that the execution of an action takes certain time and, after
committing to execute an action, a process will not be ready for the execution of
another action for some time. To model this, we assume that a process spends some
time in the execution state after entering it. We also assume that the execution of an
action will eventually terminate, thus a process will eventually return to its idle state.
In the following, we introduce a silent transition i to explicitly denote the termination
of executing an action (we make no difference between the termination of different
actions). In the following, the execution of a transition a denotes the beginning of the
execution of the action a (by all related processes), while the execution of the silent
transition ip denotes the termination of the participation of process p in the execution
of the last action. The interleaving model of the state transition system therefore
allows the modelling of actions being executed concurrently.

Let P={p1,...,pn} be the set of processes in the system and A={a1,...,am} be the
set of actions in the system. Let Pa (P�Pa) denote the process-set of action a (a�A)
and Ap (A�Ap) denote the action-set of process p (p�P). Let Sp denote the state set
of process p where a state of a process defines values of its local variables. Let ip
denote a silent action of the process p, which denotes the termination of the execution
of any action (since we make here no difference between the termination of executing
different actions). Let state-typep and guardp be two functions on states of the
process p, where state-typep:Sp -> {idle, execution} denotes the type of a state of
process p (i.e., the value of the control state variable of process p) and
guardp:SpAp-> {true, false} denotes whether process p in a given state is willing
to participate in an action.

- 5 -

Then we assume that the behavior of process p (p�P) is given by a labelled
transition system LTS = (Sp,Ap{ip},{-t->}t�Ap{ip}). A transition -t-> (t�Ap)
denotes the execution of the action t. It changes the control state variable from 'idle'
to 'execution'. It may change some of the local variables and thus it may also change
some local guards. The transition -ip-> denotes the local termination of an action
execution. It changes the control state variable from 'execution' to 'idle' and it does not
change any other local variable. For a process in the model above, each idle state
follows an execution state and each execution state follows an idle state (see the
above sub-section). Therefore, the transition system of a process has properties which
can be described formally as the follows:

(1) s' -t-> s" iff state-typep(s')=idle and state-typep(s")=execution and

guardp(s',t) and s',s"�Sp and t�Ap;
(2) s'-ip->s" iff state-typep(s')=execution and state-typep(s")=idle and

s',s"�Sp
(3) guardp(s', a) = guardp(s", a) for any a�Ap
 if s'-ip->s" (the assumption of that the execution of silent action

ip does not change any local variable)

Let S = Sp1Sp2...Spn be the set of global states. Let I = {ip|p�P}. Then the
behavior of the distributed system is defined by a label transition system
LTS=(S,AI,{-t->}t�AI), which has the following properties:

(1) <sp1', sp2', ..., spn'> -t-> <sp1", sp2", ..., spn">

 iff t� A and spi'-t-> spi" for each pi �Pt and spj'=spj" for each pj �Pt;
(2) <sp1', sp2', ..., spi',..., spn'> -ipi-> <sp1', sp2', ..., spi",..., spn'>

 iff ipi�I and spi'-ipi->spi"

The followings are predicates on global states which will be used later to define
fairness. IDLEa indicates whether all processes in the process-set of action a are in
their idle state. GUARDa indicates whether all processes in the process-set for action
a have their (local) guards being true for a. ENABLEDa indicates whether the
system is ready to execute action a, which means that all processes in the process-set
of a have their guard being true (concerning a) and are in their idle states.

Definition 2.4. For a given a�A, IDLEa is a predicate on a state. For a given state

s=<sp1, sp2, ..., spn>, IDLEa = true iff state-typepi(spi)=idle for all pi�Pa.

Definition 2.5. For a given a�A, GUARDa is a predicate on a state. For a given state

s=<sp1, sp2, ..., spn>, GUARDa = true iff guardpi(spi,a) for all pi�Pa.

Definition 2.6. For a given a�A, ENABLEDa is a predicate on a state.
ENABLEDa= true iff IDLEa and GUARDa.

- 6 -

2.3. Fairness properties

In this section we define four fairness properties, namely, w-fairness, s-fairness, u-
fairness and su-fairness. The following definitions are in the context of the model of
Section 2.2.

Definition 2.7 (w-fairness) An infinite execution history h respects w-fairness if it

satisfies  a�A, [] (�[] ENABLEDa � �EXECUTED(a))

W-fairness (also called weak fairness) describes that an action will eventually be
executed if all related processes remain in their idle state and their guard concerning
the action are true.

Definition 2.8 (s-fairness) An infinite execution history h respects s-fairness if it

satisfies  a�A, [] ([] � ENABLEDa � �EXECUTED(a))

S-fairness (also called strong fairness) describes that an action will eventually be
executed if all related processes are infinitely often ready together to execute the
action, that is, they infinitely often synchronize at their idle state and their guard
concerning the action are true. W-fairness and s-fairness are generally accepted
fairness concepts [4].

Definition 2.9 (u-fairness) An infinite execution history h respects u-fairness if it

satisfies  a�A, [] (�[] GUARDa � �EXECUTED(a))

U-fairness describes that an action will eventually be executed if the guards
concerning the action always hold for all processes in its process-set. U-fairness was
defined in [1] and is said to be good for the detection of stable properties in design of
distributed system (see [1]).

Definition 2.10 (su-fairness) An infinite execution history h respects su-fairness if it

satisfies  a�A, [] ([] � GUARDa � �EXECUTED(a))

Su-fairness describes that an action will eventually be executed if the guards for the
action infinitely often hold simultaneously for all processes in its process-set. We
have introduced su-fairness here for the implementation of s-fairness, as discussed
later. For the overlapping (concurrent) model of Section 2.2, s-fairness allows a so-
called “conspiracy” phenomenon: An action may never be executed even if the
guards for the action are always true for each process in its process-set. This may
occur if the processes in the process-set of the action never synchronize on their idle
states. Su-fairness and U-fairness do not allow such “conspiracy”; they implicitly
require that processes synchronize on their idle-states, since this is necessary for the
execution of an action.

The following theorem shows the relations among these fairness properties. S-
fairness and u-fairness are not comparable. An execution history which respects s-
fairness does not necessarily respect u-fairness, or vice-versa (see examples in [1]).

- 7 -

Theorem 2.1
(1) su-fairness � s-fairness � w-fairness
(2) su-fairness � u-fairness � w-fairness

Proof: In logic, we have (A � B) � ((B � C) � (A � C)) for any formulas A, B and

C. We have �[]ENABLEDa � []�ENABLEDa � []�GUARDa and �[]ENABLEDa

��[]GUARDa � []�GUARDa The conclusions are immediate from the related
fairness definitions.

3. Implementation of N-party synchronization respecting various fairness
properties

In the section, we will describe four distributed algorithms. Algorithms 1 and 2
respect w-fairness and u-fairness, respectively. Algorithm 3 is a solution for both w-
fairness and u-fairness. Algorithm 4 is designed to satisfy su-fairness and s-fairness.
In the model described in Section 2.2, we assume that any action will eventually
terminate after it starts. Without this assumption, it is impossible to implement s-
fairness, as proved in [12], as well as u-fairness. For example, let p be a process
which will not become idle. Then any interaction related to p can not be executed
even if its guard is always true for all processes (including p) in its process-set.

In the following, we consider that the implementation of N-party synchronization
is provided by a system consisting of two kinds of processes: P-processes and A-
processes. For each process in the model of Section 2.2, there is a corresponding P-
process. When a process in the model of Section 2.2 reaches its idle state, it informs
its corresponding P-process and provides a list of (locally) possible actions (i.e.,
actions whose guards are true). When a P-process has found out that an interaction
(global synchronization) is possible, it informs its corresponding process to enter its
execution state to execute the interaction. Note that now, N-party synchronization
means that a group of P-processes synchronize for the execution of an action.

For each action in the model of Section 2.2, there is a corresponding A-process in
the system. The function of an A-process is to control the synchronization of P-
processes. Processes (P-processes and/or A-processes) in the system communicate
with each other asynchronously and each process has a FIFO queue to store the input
messages. Each process has a unique identifier and processes are ordered by their
identifiers. We assume "minimum liveness" for processes in the following algorithms.
That is, a process does nothing only if it is in a dead-lock state. The proof of
correctness of the following algorithms in based on this assumption.

3.1. Algorithm 1

3.1.1. Informal description

An A-process can be in two states: inactive and active. An A-process changes its state
spontaneously and in a finite time from inactive to active. When in the active state, an
A-process of an action a tries to capture all P-processes in the process-set of the
action. To capture a P-process, an A-process sends a capture message to the P-
process. Afterwards, it either receives a yes message from the latter, which means that

- 8 -

the capture of the P-process succeeded, or receives a no message, which means that
the capture of the P-process failed. An A-process captures P-processes one by one in
the increasing order of their identifiers. That is, an A-process can only try to capture a
P-process p if it has captured all P-processes whose identifiers are smaller than p in
the process-set of the action. If all processes in the process-set of action a are
captured, the A-process of action a sends each related P-process a commit message
and the latter commits to execute the action. After that, the A-process changes its
state to inactive. If a capture procedure failed due the reception of a no message from
a P-process, the A-process aborts the capture procedure by sending to each P-process
which was captured previously an undo message. Then it changes its state to inactive.

Capture messages to a P-process are first queued in its capture-message-queue
(which is FIFO queue). The P-process de-queues and processes these messages one
by one according to its internal state.

A P-process can be in one of two states: idle or execution (which correspond with
the idle and execution states, respectively, in the model of Section 2.2). After
executing an action, a P-process spontaneously changes from its execution state to
idle. When it commits to execute an action, a P-process changes from the idle state to
the execution state. A P-process sends back a no message to an A-process if it de-
queues (or processes) a capture message in its execution state. In its idle state, a P-
process does the followings depending on the situation: It sends back a no message to
the A-process if the local guard for the related action is false. If it is not captured by
another A-process and the local guard for the related action is true, the P-process
agrees to be captured and sends back a yes message. After being captured, it either
executes an action upon receiving the commit message, or becomes not captured upon
receiving the undo message. The P-process delays the processing of any additional
capture messages when it is captured.

In the following formal description, the behavior of a P-process is specified by
two machines M1 and M2. M1 and M2 communicate through a queue (i.e.,
capture_message_queue). The idle state of a P-process is modeled by two states:
Idle_free (to model that the P-process is not captured) and Idle_captured (to model
that the P-process is captured).

3.1.2. Formal description

In the following we will use extended finite state machines to formally describe the
algorithm. We assume here A-processes and P-processes communicate through
reliable message communications. We also assume that an A-process has as identifier
the name of its related action.

(A) The types of messages transmitted between A- and P-processes
capture(a, p): a message from A-process a to P-process p (about action a), which means that a

tries to capture p for a rendezvous concerning action a;
yes(p, a): a message from P-process p to A-process a, which means that p agrees to be captured

by a;
no(p, a): a message from P-process p to A-process a, which means that p does not agree to be

captured by a;
commit(a, p): a message from A-process a to P-process p, by which a asks p to execute action

a;

- 9 -

undo(a, p): a message from A-process a to P-process p, by which a indicates to p that the
current capture procedure concerning action a is abandoned.

(B) The behavior of an A-process
Constants
id : the identifier of the process;
p_list : a list of process identifiers (obtained by sorting the process-set of the action),

p_list(i) denotes the i-th element of the p_list;
p_len : the length of p-list.
Variables
p_index: 1.. p_len + 1 : to record the process which is to be or being captured.
i: 1.. p_len .
State graph

 5. no/undo

Inactive Active_1 Active_2

1. i 2. capture

3. commit 4. yes

M1:

Transition table
Transitions Conditions Actions
1. i p_index := 1
2. capture if p_index ≤ p_len send capture(id, p_list(p_index))
3. commit if p_index > p_len for i := 1 to p_len do

send commit(id, p_list(i))
4. yes if yes(p,id) is received p_index := p_index + 1
5.no/undo if no(p,id) is received for i := 1 to p_index-1 do

send undo(id, p_list(i))
Initialization
M1 is in the Inactive state.

(C) The behavior of a P-process
Constants
id : the identifier of the process.
Variables
guard(a) : the guard of action a;
capture_message_queue : the queue in which received capture message are stored
State graph

Execution

Idle_free

Idle_captured

3. capture_2/ no

4. i5. capture_2/ no

6. capture_2/yes 7. undo

8. commit

M1: M2:

Input

1. capture_1

2. capture_1/ no

Transition table

Transitions Conditions Actions

- 10 -

1. capture_1 if capture(a, id) is received
and guard(a)

put capture(a, id) into
capture_message_queue

2. capture_1/no if capture(a,id) is received
and not guard(a)

send no(id, a)

3. capture_2/no if get capture(a, id) from
capture_message_queue

send no(id, a)

4. i
5. capture_2/no if get capture(a, id) from

capture_message_queue
and not guard(a)

send no(id, a)

6. capture_2/yes if get capture(a, id) from
capture_message_queue and
guard(a)

send yes(id, a)

7. undo if undo(a, id) is received
8. commit if commit(a, id) is received (to execute action a)
Initialization
M1 is in the Input state and M2 is in the Execution state; Capture_message_queue is empty.

3.1.3. Discussion

The proof of correctness of Algorithm 1 is given in [14]. It is easy to see that
Algorithm 1 satisfies synchronization and mutual exclusion required by N-party
synchronization. In the algorithm, an A-process sends out a commit message only if it
captures all the processes in the process-set of the action. A P-process agrees to be
captured only if it is in its idle state and the guard of the action holds and it can only
be captured once at a time.

Algorithm 1 satisfies w-fairness. In the algorithm, a capture message concerning
an action which is always enabled will eventually be processed by related P-
processes. This is so because each process satisfies minimum liveness and the
message is stored in FIFO queues.

3.2. Algorithm 2

Algorithm 2 is designed to satisfy u-fairness. It is obtained by modifying Algorithm
1. The idea is to force P-processes to synchronize on their idle-states. Instead of
responding no when it receives any capture message in its execution state, a P-
process postpones the processing of capture messages which are received in its
execution state until it reaches its idle state. The formal description is the same as the
one in Section 3.1.2., except that transition 3 of the P-process is deleted.

The proof of correctness of Algorithm 2 is given in [14]. Algorithm 2 satisfies u-
fairness. This is because a capture message will never be discarded by P-processes
unless its guard is false and P-processes are forced to synchronized on their idle-state.

3.3. Implementation of s-fairness and su-fairness

We present here two N-party synchronization algorithms. The first one, Algorithm 3,
respects u-fairness. It is constructed based on the Algorithms 2 above. The second
one, Algorithm 4, is designed to implement su-fairness. From Theorem 2.1, we know

- 11 -

that an algorithm satisfies s-fairness if it satisfies su-fairness. Algorithm 4 is obtained
by modifying Algorithm 3.

For the model of Section 2.2, two actions a and b are said to be conflicting if they
share some process, that is, Pa Pb ≠ (where Pa and Pb are the process-sets of a
and b, respectively). To facilitate the description in the following, we call Ca = {b |
PaPb ≠ } the conflict-set of the action a (note, a�Ca).

3.3.1. Algorithm 3

The general idea of this algorithm is as follows: In Algorithms 1 and 2, a P-process
can only be captured by one A-process at a time, which ensures mutual exclusion. In
Algorithm 3, mutual exclusion is ensured by the A-processes. That is, an A-process a
starts a capture procedure only after making sure that all conflicting A-processes b
(b�Ca) do not start their respective capture procedures. Therefore a P-process, after
receiving a capture message, will receive either a commit message or an undo
message, but not another capture message. If Algorithm 3 can ensure that all A-
processes in the system infinitely often start their capture procedure, then it is easy to
show that the algorithm respects u-fairness if the P-processes behave as defined in
Algorithm 2. The reason is that a capture procedure succeeds whenever it starts if the
related guards are always true.

Algorithm 3 can be easily constructed based on Algorithm 2. As described above,
A-processes in Algorithm 3 work in two phases, a phase of synchronization among
A-processes and a phase of capturing P-processes. We consider that each Ca (for all
a�A) defines a rendezvous relation among A-processes and the execution of a
rendezvous Ca means that A-process a has the right to start its capture procedure and
the other A-processes in Ca do not start their capture procedures. We use Algorithm 2
to synchronize the A-processes. We design the A-processes such that they are always
willing to participate in any rendezvous Ca (this means that all local guards for the
rendezvous Ca are always true). Then from Theorem 3.2, each rendezvous will be
executed infinitely often, that is, each A-process will infinitely often start its capture
procedure. The capture procedure will be the same as in Algorithm 2.

3.3.2. Algorithm 4

The key idea of Algorithm 4 is to introduce priority among actions. The action which
has the highest priority will be executed whenever its guard is true. Algorithm 4 also
forces processes to synchronize on their idle-states.

3.3.2.1. Informal description

Like Algorithm 3, Algorithm 4 also works in two phases: synchronizing A-processes
and capturing P-processes. To implement su-fairness, we consider that different
actions have different priorities. The priority of an action may change during the
execution and the more an action is executed, the lower becomes its priority. During
the phase of A-process synchronization, an A-process a tries to capture all A-
processes (instead of capturing A-processes in Ca as in Algorithm 3) to ensure the
priority. Let Ra denotes a rendezvous relation among all A-processes and the

- 12 -

execution of a rendezvous Ra means that A-process a has the right to start its capture
procedure and the other A-processes do not start their capture procedures. An A-
process a is willing to participate in Rb only if the priority of b is higher than the one
of a, or it is sure that the execution of action a is not possible at the moment (the
previous capturing procedure concerning action a failed and no P-process p (p�Pa)
has been in its execution state (which may have changed its state) ever since).
Whenever an action a is executed, all A-processes are informed. The execution of the
action a may change the state of P-processes p (p�Pa). Thus after knowing the
execution of action a, an A-process b (b�Ca) which used to believe that the execution
of action b is not possible does not have such confidence any more. Like for
Algorithm 3 as described above, after a rendezvous Ra is executed, the A-process a
starts its capture procedure, which is the same as in Algorithm 2.

3.3.2.2. Formal descriptions

(A) The types of messages
Between A-processes
capture_a(a, a'): : a message from A-process a to A-process a', which means that a tries to

capture a' for a rendezvous concerning the rendezvous relation Ra;
yes_a(a', a): a message from A-process a' to A-process a, which means that a' agrees to be

captured by a;
no_a(a', a): : a message from A-process a' to A-process a, which means that a' does not agree

to be captured by a;
commit_a(a, a'): : a message from A-process a to A-process a', by which a informs a' about

the execution of Ra;
undo_a(a, a'):: a message from A-process a to A-process a', by which a indicates to a' the

abortion of the current capture procedure concerning the rendezvous relation Ra.
Between A- and P-processes
capture_p(a, p): a message from A-process a to P-process p, which means that a tries to

capture p for a rendezvous concerning action a;
yes_p(p, a): a message from P-process p to A-process a, which means that p agrees to be

captured by a;
no_p(p, a): a message from P-process p to A-process a, which means that p does not agree to

be captured by a;
commit_p(a, p): a message from A-process a to P-process p, by which a asks p to execute

action a;
undo_p(a, p): a message from A-process a to P-process p, by which a indicates to p the

abortion of the current capture procedure concerning action a.

(B) The behavior of an A-process
Constants
id : the identifier of the process;
a_list : a list of A-process identifiers (obtained by sorting all actions in the

system), a_list(i) denotes the i-th element of the a_list;
conflict: the conflict set of the action;
a_len : the length of a_list;
p_list : a list of P-process identifiers (obtained by sorting Pa, the process-set of the

action), p_list(i) denotes the i-th element of the p_list;
p_len : the length of p-list;
Variables

- 13 -

a_index: 1.. a_len+1
ia : 1 .. a_len
captured_all_a : boolean : to record if the capturing of A-processes has succeeded
captured_all_p: boolean : to record if the capturing of P-processes has succeeded
tried: boolean :
 tried = true means that the latest capture P-process procedure failed;
 tried = false means that the A-process needs to start a new procedure to capture P-

processes.
action_priority_queue :
 a list of actions. It supports the following two operations:
 a > b: boolean : which is true if b is behind a in the queue;
 decrease_priority(a) : which removes a from the current position and puts it at the tail

of the queue
capture-a_message_queue : the queue in which received capture-a messages are stored
p_index: 1.. p_len+1 : to record the process which is to be or being captured.
ip : 1.. p_len

State graph

5. no-a/ undo-a

Active-a_1 Active-a_2

1. i 2. capture-a

3. i 4. yes-a

M1:

13. no-p/ undo-p

9. i10. capture-p

11. commit-p12. yes-p

6. i

7. undo-a

8. commit-a

16. i17. capture-a_2/ no-a

18. capture-a_2/yes-a 19. undo-a

20. commit-a/ conf-a

M2: M3:

Input-a

14. capture-a_1

15. capture-a_1/ no-a

Execution-a

Idle_free-a

Idle_capture-a

Inactive-pActive-p_1Active-p_2 Inactive-a

Transition table
Transitions Conditions Actions
1. i if not tried and not

captured_all_a
a_index := 1

2. capture-a if a_index ≤ a_len send capture-a(id,a_list(a_index))
3. i if a_index > a_len captured_all_a := true
4. yes-a if yes-a(a',id) is received a_index := a_index + 1
5. no-a/undo-a if no-a(a',id) is received for ia := 1 to a_index-1 do send

undo-a(id, a_list(ia));
captured_all_a := false

6. i if not captured_all_p
and captured_all_a and not
tried

7. undo-a if tried and not
captured_all_p

for ia := 1 to a_len do
send undo-a(id, a_list(ia));
captured_all_a := false

- 14 -

8. commit-a if captured_all_p for ia:= 1 to a_len do
send commit-a(id, a_list(ia));
captured_all_a := false;
captured_all_p := false

9. i if not tried and not
captured_all_p

p_index := 1

10. capture-p if p_index ≤ p_len send capture-p(id, p_list(p_index))
11. commit-p if p_index > p_len captured_all_p := true

for ip := 1 to p_len do
send commit-p(id,a_list(ip));

12. yes-p if yes-p(p,id) is received p_index := p_index + 1
13. no-p/undo-p if no-p(p,id) is received for ip := 1 to p_index-1 do send

undo-p(id, p_list(ip)); tried := true

14. capture-a_1 if capture-a(a',id) is received
and (tried or a' > id)

put capture-a(a', id) into
capture-a_message_queue

15. capture-a_1/no-a if capture-a(a',id) is received
and not tried and id > a'

send no-a(id, a')

16. i
17. capture-a_2/no-a if get capture-a(a', id) from

capture-a_message_queue
and not tried and id > a'

send no-a(id, a')

18. capture-a_2/yes-a if get capture(a', id) from
capture-a_message_queue
and (tried or a' > id)

send yes-a(id, a')

19. undo-a if undo-a(a',id) is received
20. commit-a/conf-a if commit-a(a', id) is

received
decrease_priority(a');
if a�conflict then tried := false;

Initialization
M1 is in the Inactive-a state, M2 is in the Input-a state and M3 is in the Execution-a state;
captured_all_a:= false; captured_all_p:= false; tried:= false; action_priority_queue := sorted all
actions of the system; Capture-a_message_queue := empty.

(C) The behavior of a P-process
It is the same as the behavior of a P-process defined in Algorithm 1 except that transition 3 is
deleted (see Section 3.1.2).

3.3.2.3. Discussion

The proof of correctness of Algorithm 4 is given in [14]. Algorithm 4 satisfies su-
fairness. In the algorithm, capture-p messages concerning only a single action can be
sent out at any given time. Actions have different priorities. A capture-p message
concerning an action can be sent out only if all actions having higher priorities have
false guards. Priorities of actions change dynamically. The priority of an action is
decreased after the action is executed.

4. Discussion and Conclusions

- 15 -

In this paper, we used labeled transition systems to model distributed systems with
fairness. The so-called w-fairness, s-fairness, u-fairness and su-fairness are defined
and four N-party synchronization algorithms are presented. Algorithms 1 and 2
satisfy w-fairness and u-fairness, respectively. Algorithm 3 respects w-fairness and u-
fairness. Instead of directly implementing s-fairness, Algorithm 4 is designed to
satisfy su-fairness which is stronger than s-fairness.

Actually, Algorithm 1 is neither new nor optimized. The idea of capturing
processes one by one in a pre-defined order was used by Ramesh [11] as well as
Kumar [8]. What is new about Algorithm 1 is that it is more abstract and simple,
which makes the reasoning about fairness easier. In fact, both Ramesh's and Kumar's
algorithms can be seen as optimizations of our Algorithm 1 (see [14] for details).
Algorithm 2 is new and satisfies u-fairness. It forces process synchronize at their idle
states which is implicitly required by u-fairness. Both Ramesh's and Kumar's
algorithms satisfy w-fairness, but not u-fairness. Since the two algorithms can be seen
as two optimizations of our Algorithm 1, we conclude that, we can modify these two
algorithms to satisfy u-fairness, as we did for Algorithm 1 to obtain Algorithm 2.

Algorithm 3 is new and shows another scheme for implementing N-party
synchronization. Algorithm 4 is constructed based on the scheme of Algorithm 3.
The idea of synchronizing A-processes is also used in the algorithm of [5]. In the
algorithm, the system first finds actions which are enabled, and then solves the
conflicts among these actions. Algorithm 4 satisfies su-fairness and s-fairness by
using the key idea of introducing priority among actions and forcing processes to
synchronize on their idle-states.

The algorithms given in this paper are abstract in the sense they are not optimized.
The abstraction simplifies the construction of the algorithms and reasoning of their
correctness. We show, from the design of the algorithms, that the stronger the fairness
expected form an algorithm, the more synchronization (global information) is
required.

Reference

1. R. C. Attie, I. R. Forman and E. Levy, On Fairness as an abstraction for the design of
distributed systems, Proc. of The 10th International Conference on Distributed Computing
Systems, Paris, France, 1990.

2. R.J.R. Back and R. Kurki-Suonio, Serializability in distributed systems with hand-shaking,
in Proc. 15th ICALP, Tampere, LNCS 317, pages 52-66, Springer-Verlag, Juillly 1988.

3. A. Charlesworth, The Multi-way Rendezvous, ACM Tran. on Programming Languages and
Systems, Vol. 9, No. 2, July 1987, pp. 350-366.

4. N. Francez, Fairness, Springer-Verag New York, 1986.
5. Q. Gao and G. v. Bochmann, Distributed Implementation of LOTOS Multiple-Rendezvous,

participant proceeding of The 9th International Symposium of Protocol Specification,
Testing, and Verification, Enschede, The Netherlands, 1989.

6. ISO, LOTOS: a formal description technique, IS8807, 1989.
7. R. Kuiper and W. P. d. Roever, Fairness assumptions for CSP in a temporal logic

framework, Proc. of TC.2 Working Conference on the Formal Description of
Programming Concepts, Garmisch Partenkirchen, North Holland, 1983.

8. D. Kumar, An implementation of N-way Synchronization Using Tokens, Proc. of The 10th
International Conference on Distributed Computing Systems, Paris France, 1990.

- 16 -

9. J. Parrow, Fairness properties in process algebra, (Ph.D. thesis) Dept. of computer
Systems, Uppsala University, Uppsala, Sweden, 1985.

10. A. Pnueli, The Temporal Semantics of Concurrent Programs, LNCS 70, Springer-Verlag,
1979, pp. 1-20.

11. S. Ramesh, A New and Efficient Implementation of Multiprocesses Synchronization, Proc.
of PARLE, Eindhoven, 1987.

12. Yih-Kuen Tsay, Rajive L.Bagrodia, "Some Impossibility Results in Interprocess
Synchronization", Technical report CSD-890059, Computer Science Department, UCLA,
1989

13. C. Wu and G. v. Bochmann, Fairness in LOTOS, FORTE'91, Sydney, Nov. 19 - 21, 1991.
14. C. Wu, G. V. Bochmann, and Minyu Yao, Fairness of N-party Synchronization and Its

Implementation in a Distributed Environment, No. 797, Dept. I.R.O., Universite de
Montreal, Nov. 1991

